Stem Cell Treatment in Retinal Diseases: Recent Developments
PDF
Cite
Share
Request
Review
VOLUME: 48 ISSUE: 1
P: 33 - 38
February 2018

Stem Cell Treatment in Retinal Diseases: Recent Developments

Turk J Ophthalmol 2018;48(1):33-38
1. Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
No information available.
No information available
Received Date: 29.01.2017
Accepted Date: 07.06.2017
Publish Date: 23.02.2018
PDF
Cite
Share
Request

ABSTRACT

Stem cells are undifferentiated cells which have the ability to self-renew and differentiate into mature cells. They are highly proliferative, implying that an unlimited number of mature cells can be generated from a given stem cell source. On this basis, stem cell replacement therapy has been evaluated in recent years as an alternative for various pathologies. Degenerative retinal diseases cause progressive visual decline which originates from continuing loss of photoreceptor cells and outer nuclear layers. Theoretically, this therapy will enable the generation of new retinal cells from stem cells to replace the damaged cells in the diseased retina. In addition, stem cells are able to perform multiple functions, such as immunoregulation, anti-apoptosis of neurons, and neurotrophin secretion. With recent progress in experimental stem cell applications, phase I/II clinical trials have been approved. These latest stem cell transplantation studies showed that this therapy is a promising approach to restore visual function in eyes with degenerative retinal diseases such as retinitis pigmentosa, Stargardts’ macular dystrophy, and age-related macular degeneration. This review focuses on new developments in stem cell therapy for degenerative retinal diseases.

Keywords:
Stem cell, retinal diseases, recent developments

Introduction

Degenerative retinal diseases are among the main causes of irreversible vision loss. In recent years, stem cell transplant studies aiming to restore visual function in these diseases have gained momentum. In this review, we discuss general information about stem cells and evaluate the results of recent experimental and clinical studies concerning the treatment of retinal diseases.

Conclusion

The results reported for phase I/II trials of stem cell applications are quite successful. No systemic side effects were observed in any of the studies. In addition, serious ocular side effects such as tumor formation and uncontrolled proliferation have not been observed. The reported improvements in visual function are encouraging and promising. However, it should not be forgotten that sight-threatening vitreoretinal complications can develop after intravitreal and subretinal applications. Larger studies with longer follow-up periods are needed to determine the place that this treatment will hold in the future. There are currently many studies in progress regarding the use of stem cells in different retinal diseases, and the results are highly anticipated.

References

1
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med. 2016;22:115–134. [PubMed] [Google Scholar]
2
Siqueira RC. Stem cell therapy for retinal diseases: update. Stem Cell Res Ther. 2011;2:50. [PMC free article] [PubMed] [Google Scholar]
3
Shintani K, Shechtman DL, Gurwood AS. Review and update: Current treatment trends for patients with retinitis pigmentosa. Optometry. 2009;80:384–401. [PubMed] [Google Scholar]
4
Bennicelli JL, Bennett J. Stem cells set their sights on retinitis pigmentosa. ELife. 2013;2:e01291. [PMC free article] [PubMed] [Google Scholar]
5
Uy HS, Chan PS, Cruz FM. Stem Cell Therapy: a Novel Approach for Vision Restoration in Retinitis Pigmentosa. Med Hypothesis Discov Innov Ophthalmol. 2013;2:52–55. [PMC free article] [PubMed] [Google Scholar]
6
Chung Y, Klimanskaya I, Becker S, Li T, aserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2:113–117. [PubMed] [Google Scholar]
7
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. [PubMed] [Google Scholar]
8
Tucker BA, Mullins RF, Stone EM. Stem cells for investigation and treatment of inherited retinal disease. Human Mol Genet. 2014;23:9–16. [PMC free article] [PubMed] [Google Scholar]
9
Whiting P, Kerby J, Coffey P, da Cruz L, McKernan R. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140375. [PMC free article] [PubMed] [Google Scholar]
10
Meyer JS, Katz ML, Maruniak JA, Kirk MD. Neural differentiation of mouse embryonic stem cells in vitro and after transplantation into eyes of mutant mice with rapid retinal degeneration. Brain Res. 2004;1014:131–144. [PubMed] [Google Scholar]
11
Meyer JS, Katz ML, Maruniak JA, Kirk MD. Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells. 2006;24:274–283. [PMC free article] [PubMed] [Google Scholar]
12
Banin E, Obolensky A, Idelson M, Hemo I, Reinhardtz E, Pikarsky E, Ben-Hur T, Reubinoff B. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells. 2006;24:246–257. [PubMed] [Google Scholar]
13
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5:396–408. [PubMed] [Google Scholar]
14
Lund RD, Wang S, Klimanskaya I, Holmes T, amos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8:189–199. [PubMed] [Google Scholar]
15
Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M, hmado A, Gias C, da Cruz L, Moore H, Andrews P, Walsh J, Coffey P. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214:347–361. [PubMed] [Google Scholar]
16
Lu B, Malcuit C, Wang S, Girman S, Francis P, emieux L, Lanza R, Lund R. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27:2126–2135. [PubMed] [Google Scholar]
17
Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20. [PubMed] [Google Scholar]
18
Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–516. [PubMed] [Google Scholar]
19
Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, Shim SH, Del Priore LV, Lanza R. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports. 2015;4:860–872. [PMC free article] [PubMed] [Google Scholar]
20
Schwartz SD, Tan G, osseini H, Nagiel A. Subretinal Transplantation of Embryonic Stem Cell-Derived Retinal Pigment Epithelium for the Treatment of Macular Degeneration: An Assessment at 4 Years. Invest Ophthalmol Vis Sci. 2016;57:ORSFc1–9. [PubMed] [Google Scholar]
21
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. [PubMed] [Google Scholar]
22
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. [PubMed] [Google Scholar]
23
Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2:3081–3089. [PubMed] [Google Scholar]
24
Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;13:474:212–215. [PubMed] [Google Scholar]
25
Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, Khvorostov I, Ott V, Grunstein M, Lavon N, Benvenisty N, Croce CM, Clark AT, Baxter T, Pyle AD, Teitell MA, Pelegrini M, Plath K, Lowry WE. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009;5:111–123. [PMC free article] [PubMed] [Google Scholar]
26
Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature. 2010;465:175–181. [PMC free article] [PubMed] [Google Scholar]
27
Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73. [PMC free article] [PubMed] [Google Scholar]
28
Zhao T, Xu Y. p53 and stem cells: new developments and new concerns. Trends Cell Biol. 2010;20:170–175. [PubMed] [Google Scholar]
29
Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, hmado A, Semo M, Smart MJ, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4:8152. [PMC free article] [PubMed] [Google Scholar]
30
Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J. Redenti S, Daley GQ, Young MJ. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One. 2011;6:18992. [PMC free article] [PubMed] [Google Scholar]
31
Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18:1312–1319. [PMC free article] [PubMed] [Google Scholar]
32
Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–891. [PubMed] [Google Scholar]
33
Pera MF. Stem cells: The dark side of induced pluripotency. Nature. 2011;471:46–47. [PubMed] [Google Scholar]
34
He Y, Zhang Y, Liu X, Ghazaryan E, Li Y, Xie J, Su G. Recent Advances of Stem Cell Therapy for Retinitis Pigmentosa. Int J Mol Sci. 2014;15:14456–14474. [PMC free article] [PubMed] [Google Scholar]
35
Bharti K, Rao M, Hull SC, Stroncek D, Brooks BP, Feigal E, van Meurs JC, Huang CA, Miller SS. Developing cellular therapies for retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2014;55:1191–1202. [PMC free article] [PubMed] [Google Scholar]
36
Harasymiak-Krzyżanowska I, Niedojadło A, Karwat J, Kotuła L, Gil-Kulik P, Sawiuk M, Kocki J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett. 2013;18:479–493. [PMC free article] [PubMed] [Google Scholar]
37
Huo DM, Dong FT, Yu WH, Gao F. Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa. Int J Ophthalmol. 2010;3:216–219. [PMC free article] [PubMed] [Google Scholar]
38
Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, awamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, ori M, Ishii H. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ. 2013;55:309–318. [PubMed] [Google Scholar]
39
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy. 2015;17:543–559. [PubMed] [Google Scholar]
40
Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci. 2011;18:49. [PMC free article] [PubMed] [Google Scholar]
41
Sugitani S, Tsuruma K, Ohno Y, Kuse Y, Yamauchi M, Egashira Y, Yoshimura S, Shimazawa M, Iwama T, ara H. The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res. 2013;116:254–264. [PubMed] [Google Scholar]
42
Guan Y, Cui L, Qu Z, u L, Wang F, Wu Y, Zhang J, Gao F, Tian H, Xu L, Xu G, Li W, Jin Y, Xu GT. Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. Curr Mol Med. 2013;13:1419–1431. [PubMed] [Google Scholar]
43
Jian Q, Li Y, Yin ZQ. Rat BMSCs initiate retinal endogenous repair through NGF/TrkA signaling. Exp Eye Res. 2015;132:34–47. [PubMed] [Google Scholar]
44
Tsuruma K, Yamauchi M, ugitani S, Otsuka T, Ohno Y, Nagahara Y, Ikegame Y, Shimazawa M, Yoshimura S, Iwama T, ara H. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration. Stem Cells Transl Med. 2014;3:42–53. [PMC free article] [PubMed] [Google Scholar]
45
Huang C, Zhang J, Ao M, Li Y, Zhang C, Xu Y, Li X, ang W. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype. J Cell Biochem. 2012;113:590–598. [PubMed] [Google Scholar]
46
Castanheira P, Torquetti L, Nehemy MB, Goes AM. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats. Arq Bras Oftalmol. 2008;71:644–650. [PubMed] [Google Scholar]
47
Haddad-Mashadrizeh A, Bahrami AR, Matin MM, Edalatmanesh MA, Zomorodipour A, Gardaneh M, Farshchian M, omeni-oghaddam M. Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation. 2013;20:165–176. [PubMed] [Google Scholar]
48
Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31:1207–1214. [PubMed] [Google Scholar]
49
Siqueira RC, Messias A, Messias K, Arcieri RS, Ruiz MA, Souza NF, Martins LC, Jorge R. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell -clinical trial) Stem Cell Res Ther. 2015;6:29. [PMC free article] [PubMed] [Google Scholar]
50
Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2014;56:81–89. [PMC free article] [PubMed] [Google Scholar]
51
Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther. 2016;7:178. [PMC free article] [PubMed] [Google Scholar]
52
Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, Parrot MB, Rosenfeld PJ, Flynn HW Jr, Goldberg JL. Vision Loss after Intravitreal Injection of Autologous “Stem Cells” for AMD. N Engl J Med. 2017;376:1047–1053. [PMC free article] [PubMed] [Google Scholar]
53
Satarian L, Nourinia R, afi S, Kanavi MR, Jarughi N, Daftarian N, Arab L, Aghdami N, Ahmadieh H, Baharvand H. Intravitreal Injection of Bone Marrow Mesenchymal Stem Cells in Patients with Advanced Retinitis Pigmentosa; a Safety Study. J Ophthalmic Vis Res. 2017;12:58–64. [PMC free article] [PubMed] [Google Scholar]
54
Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget. 2016;7:46913–46923. [PMC free article] [PubMed] [Google Scholar]