Current Therapeutic Approaches to Chronic Central Serous Chorioretinopathy
PDF
Cite
Share
Request
Review
VOLUME: 49 ISSUE: 1
P: 30 - 39
February 2019

Current Therapeutic Approaches to Chronic Central Serous Chorioretinopathy

Turk J Ophthalmol 2019;49(1):30-39
1. Şanlıurfa Training and Research Hospital, Ophthalmology Clinic, Şanlıurfa, Turkey
2. Marmara University Faculty of Medicine, Department of Ophthalmology, İstanbul, Turkey
No information available.
No information available
Received Date: 28.03.2018
Accepted Date: 06.09.2018
Publish Date: 28.02.2019
PDF
Cite
Share
Request

ABSTRACT

Central serous chorioretinopathy (CSCR) is the second most common maculopathy after diabetic maculopathy between the third and fifth decades of life. CSCR is characterized by serous neurosensory retinal detachment occasionally coexisting with retinal pigment epithelium (RPE) detachment. CSCR usually has good clinical prognosis, often resolving spontaneously within the first three months. However, some patients may have recurrent episodes and chronic disease. CSCR can cause permanent visual loss due to persistent neurosensory retinal detachment and RPE atrophy, especially in chronic cases. In recent years, verteporfin-photodynamic therapy applied with standard and low-dose/low-fluence protocols, anti-vascular endothelial growth factors, glucocorticoid antagonists, mineralocorticoid receptor antagonists, and subthreshold micropulse laser with varying parameters have been investigated as treatment options. In this review, we evaluated randomized and non-randomized case series conducted after 2000 that included at least 3 patients with chronic CSCR over 3 months in duration who were treated with current treatment options for chronic CSCR.

Keywords:
Central serous chorioretinopathy, subthreshold micropulse laser, anti-vascular endothelial growth factor, verteporfin photodynamic therapy

Introduction

Central serous chorioretinopathy (CSCR) is characterized by serous neurosensory retinal detachment (NSD) accompanied by retinal pigment epithelium (RPE) detachment in some cases, and is the second most common maculopathy after diabetic maculopathy between the third and fifth decades of life.1,2,3 Clinically, CSCR has a good prognosis and usually resolves spontaneously within the first 3 months.2,3 However, approximately 5% of cases can become chronic.1,4 Refractory NSD, which can develop in chronic CSCR, may lead to photoreceptor damage, diffuse RPE changes, RPE atrophy, and subsequent permanent vision loss.1,2,3

Studies on the subject have demonstrated that the two main factors involved in the pathogenesis of CSCR. The first is alterations in the autoregulatory mechanisms of choroidal circulation and the subsequent choroidal ischemia, and the second is irregularities in RPE pump function.5,6,7 Choroidal stasis, inflammation, and ischemia due to dysregulation of regulatory proteins (glucocorticoids, mineralocorticoids, epinephrine, norepinephrine) in the choroidal circulation leads to an increase in choroidal permeability.7,8,9,10 This hypothesis is corroborated by the presence of local and/or diffuse leakage in fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA), which are important diagnostic methods for CSCR.5,10,11,12,13 Due to the multifactorial and complex mechanism of CSCR pathophysiology, several treatment options, such as conventional laser (CL) and verteporfin photodynamic therapy (PDT) have been tried, particularly in the treatment of the chronic type; however, CL was reported to have no significant effect on the final visual acuity or recurrence rate and to have toxic effect on the RPE and photoreceptors.14,15 Although successful results were obtained with the standard protocol (full-dose, full-fluence) PDT (SP-PDT), this treatment was also observed to have toxic effects on the RPE and photoreceptors.16,17,18 The adverse effects of CL and SP-PDT have prompted studies in recent years on the safety and efficacy of subthreshold micropulse laser (SML), verteporfin PDT with different parameters (half-dose [HD] or half-fluence [HF]), glucocorticoid antagonists, mineralocorticoid receptor (MR) antagonists, and anti-VEGF agents (Figure 1).19,20,21,22

This review evaluated current treatment approaches to chronic CSCR based on randomized and nonrandomized studies that accepted symptom duration of at least 3 months as chronic disease and included at least a case series (more than 3 cases).

Conclusion

An evaluation of the literature data regarding current treatment options for chronic CSCR, such as SML, anti-VEGF, MR antagonists, and PDT, suggests that SML is superior to CL in terms of adverse effects and comparable to PDT in terms of efficacy. Assessing the effectiveness of SML using longer-term follow-up data will provide more reliable information for comparison with the effectiveness of PDT. In addition, similar to CL, the ineffectiveness of SML in diffuse RPE leakages is considered an additional disadvantage. Although the valuable prospective randomized study by Artunay et al.22 offered promising results, studies on anti-VEGF have usually been reports of a few cases, which limits the power of these studies. Therefore, performing randomized studies with larger sample sizes will yield more reliable results. Moreover, the most probable pathogenesis of the disease is not closely related to the mechanism of action of anti-VEGF, which suggests that these agents may not be very effective. Studies on MR antagonists have shown that these are effective treatment options; however, the results indicate that these short acting agents are more disadvantageous in terms of patient compliance and in comparison with treatment options with more permanent effects such as PDT and SML. Studies with longer follow-up will also provide more definitive data regarding the effectiveness of MR antagonists. Finally, although PDT is known to be more costly than CL, studies indicate that verteporfin PDT is superior to and safer than CL therapy in terms of effectiveness and adverse event profiles, particularly in chronic, subfoveal, and juxtafoveal involvement. In particular, the fact that PDT at different parameters (HD-PDT, HF-PDT) minimized adverse effects such as choroidal ischemia and CNV supports this treatment as an effective and safe treatment option for chronic CSCR.

References

1
Wang M, Munch IC, Hasler PW, Prunte C, Larsen M. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86:126–145. [PubMed] [Google Scholar]
2
Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol. 2013;58:103–126. [PMC free article] [PubMed] [Google Scholar]
3
Loo RH, Scott IU, Flynn HW Jr, Gass JD, Murray TG, Lewis ML, Rosenfeld PJ, Smiddy WE. Factors associated with reduced visual acuity during longterm follow-up of patients with idiopathic central serous chorioretinopathy. Retina. 2002;22:19–24. [PubMed] [Google Scholar]
4
Liegl R, Ulbig MW. Central serous chorioretinopathy. Ophthalmologica. 2014;232:65–76. [PubMed] [Google Scholar]
5
Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057–1062. [PubMed] [Google Scholar]
6
Jalkh AE, Jabbour N, Avila MP, Trempe CL, Schepens CL. Retinal pigment epithelium decompensation. I. Clinical features and natural course. Ophthalmology. 1984;91:1544–1548. [PubMed] [Google Scholar]
7
Liew G, Quin G, Gillies M, Fraser-Bell S. Central serous chorioretinopathy: a review of epidemiology and pathophysiology. Clin Exp Ophthalmol. 2013;41:201–214. [PubMed] [Google Scholar]
8
Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S; Central Serous Chorioretinopathy Case-Control Study G. Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology. 2004;111:244–249. [PubMed] [Google Scholar]
9
Haimovici R, Rumelt S, Melby J. Endocrine abnormalities in patients with central serous chorioretinopathy. Ophthalmology. 2003;110:698–703. [PubMed] [Google Scholar]
10
Sakaue M, Hoffman BB. Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells. J Clin Invest. 1991;88:385–389. [PMC free article] [PubMed] [Google Scholar]
11
Spaide RF, Hall L, Haas A, Campeas L, Yannuzzi LA, Fisher YL, Guyer DR, Slakter JS, Sorenson JA, Orlock DA. Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina. 1996;16:203–213. [PubMed] [Google Scholar]
12
Yoshioka H, Katsume Y. [Studies on experimental central serous chorioretinopathy. A light and electron microscopy] Nippon Ganka Gakkai Zasshi. 1982;86:738–749. [PubMed] [Google Scholar]
13
Spitznas M. Pathogenesis of central serous retinopathy: a new working hypothesis. Graefes Arch Clin Exp Ophthalmol. 1986;224:321–324. [PubMed] [Google Scholar]
14
Annesley WH Jr, Augsburger JJ, Shakin JL. Ten year follow-up of photocoagulated central serous choroidopathy. Trans Am Ophthalmol Soc. 1981;793:335–346. [PMC free article] [PubMed] [Google Scholar]
15
Gass JD. Photocoagulation treatment of idiopathic central serous choroidopathy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1977;83:456–467. [PubMed] [Google Scholar]
16
Reibaldi M, Cardascia N, Longo A, Furino C, Avitabile T, Faro S, Sanfilippo M, Russo A, Uva MG, Munno F, Cannemi V, Zagari M, Boscia F. Standard-fluence versus low-fluence photodynamic therapy in chronic central serous chorioretinopathy: a nonrandomized clinical trial. Am J Ophthalmol. 2010;149:307–315. [PubMed] [Google Scholar]
17
Arevalo JF, Espinoza JV. Single-session combined photodynamic therapy with verteporfin and intravitreal anti-vascular endothelial growth factor therapy for chronic central serous chorioretinopathy: a pilot study at 12-month follow-up. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1159–1166. [PubMed] [Google Scholar]
18
Ruiz-Moreno JM, Lugo FL, Armada F, Silva R, Montero JA, Arevalo JF, Arias L, Gomez-Ulla F. Photodynamic therapy for chronic central serous chorioretinopathy. Acta Ophthalmol. 2010;88:371–376. [PubMed] [Google Scholar]
19
Chan WM, Lai TY, Lai RY, Tang EW, Liu DT, Lam DS. Safety enhanced photodynamic therapy for chronic central serous chorioretinopathy: one-year results of a prospective study. Retina. 2008;28:85–93. [PubMed] [Google Scholar]
20
Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy. Eye (Lond). 2012;26:307–314. [PMC free article] [PubMed] [Google Scholar]
21
Lim JW, Kim MU. The efficacy of intravitreal bevacizumab for idiopathic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249:969–974. [PubMed] [Google Scholar]
22
Artunay O, Yuzbasioglu E, Rasier R, Sengul A, Bahcecioglu H. Intravitreal bevacizumab in treatment of idiopathic persistent central serous chorioretinopathy: a prospective, controlled clinical study. Curr Eye Res. 2010;35:91–98. [PubMed] [Google Scholar]
23
Ricci F, Missiroli F, Regine F, Grossi M, Dorin G. Indocyanine green enhanced subthreshold diode-laser micropulse photocoagulation treatment of chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2009;247:597–607. [PubMed] [Google Scholar]
24
Chen SN, Hwang JF, Tseng LF, Lin CJ. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology. 2008;115:2229–2234. [PubMed] [Google Scholar]
25
Lanzetta P, Furlan F, Morgante L, Veritti D, Bandello F. Nonvisible subthreshold micropulse diode laser (810 nm) treatment of central serous chorioretinopathy. A pilot study. Eur J Ophthalmol. 2008;18:934–940. [PubMed] [Google Scholar]
26
Abd Elhamid AH. Subthreshold micropulse yellow laser treatment for nonresolving central serous chorioretinopathy. Clin Ophthalmol. 2015;9:2277–2283. [PMC free article] [PubMed] [Google Scholar]
27
Scholz P, Altay L, Fauser S. Comparison of subthreshold micropulse laser (577 nm) treatment and half-dose photodynamic therapy in patients with chronic central serous chorioretinopathy. Eye (Lond). 2016;30:1371–1377. [PMC free article] [PubMed] [Google Scholar]
28
Maruko I, Koizumi H, Hasegawa T, Arakawa H, Iida T. Subthreshold 577 nm micropulse laser treatment for central serous chorioretinopathy. PLoS One. 2017;12:e0184112. [PMC free article] [PubMed] [Google Scholar]
29
Özmert E, Demirel S, Yanık O, Batıoğlu F. Low-Fluence Photodynamic Therapy versus Subthreshold Micropulse Yellow Wavelength Laser in the Treatment of Chronic Central Serous Chorioretinopathy. J Ophthalmol. 2016;2016:3513794. [PMC free article] [PubMed] [Google Scholar]
30
Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M, Ueda- Arakawa N, Takahashi A, Tsujikawa A, Yoshimura N. Intraocular Vascular Endothelial Growth Factor Levels in Pachychoroid Neovasculopathy and Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2017;58:292–298. [PubMed] [Google Scholar]
31
Lim JW, Kim MU, Shin MC. Aqueous humor and plasma levels of vascular endothelial growth factor and interleukin-8 in patients with central serous chorioretinopathy. Retina. 2010;30:1465–1471. [PubMed] [Google Scholar]
32
Aydin E. The efficacy of intravitreal bevacizumab for acute central serous chorioretinopathy. J Ocul Pharmacol Ther. 2013;29:10–13. [PubMed] [Google Scholar]
33
Inoue M, Kadonosono K, Watanabe Y, Kobayashi S, Yamane S, Arakawa A. Results of one-year follow-up examinations after intravitreal bevacizumab administration for chronic central serous chorioretinopathy. Ophthalmologica. 2011;225:37–40. [PubMed] [Google Scholar]
34
Kim DY, Joe SG, Yang SJ, Lee JY, Kim JG, Yoon YH. The association between choroidal thickness variations and response to intravitreal bevacizumab in central serous chorioretinopathy. Korean J Ophthalmol. 2015;29:160–167. [PMC free article] [PubMed] [Google Scholar]
35
Yannuzzi LA. Central serous chorioretinopathy: a personal perspective. Am J Ophthalmol. 2010;149:361–363. [PubMed] [Google Scholar]
36
Ji S, Wei Y, Chen J, Tang S. Clinical efficacy of anti-VEGF medications for central serous chorioretinopathy: a meta-analysis. Int J Clin Pharm. 2017;39:514–521. [PubMed] [Google Scholar]
37
Quin G, Liew G, Ho IV, Gillies M, Fraser-Bell S. Diagnosis and interventions for central serous chorioretinopathy: review and update. Clin Exp Ophthalmol. 2013;41:187–200. [PubMed] [Google Scholar]
38
Zakir SM, Shukla M, Simi ZU, Ahmad J, Sajid M. Serum cortisol and testosterone levels in idiopathic central serous chorioretinopathy. Indian J Ophthalmol. 2009;57:419–422. [PMC free article] [PubMed] [Google Scholar]
39
Nielsen JS, Jampol LM. Oral mifepristone for chronic central serous chorioretinopathy. Retina. 2011;31:1928–1936. [PubMed] [Google Scholar]
40
Shulman S, Goldenberg D, Schwartz R, Habot-Wilner Z, Barak A, Ehrlich N, Loewenstein A, Goldstein M. Oral Rifampin treatment for longstanding chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254:15–22. [PubMed] [Google Scholar]
41
Grieshaber MC, Staub JJ, Flammer J. The potential role of testosterone in central serous chorioretinopathy. Br J Ophthalmol. 2007;91:118–119. [PMC free article] [PubMed] [Google Scholar]
42
Nudleman E, Witmer MT, Kiss S, Williams GA, Wolfe JD. Central serous chorioretinopathy in patients receiving exogenous testosterone therapy. Retina. 2014;34:2128–2132. [PubMed] [Google Scholar]
43
Moisseiev E, Holmes AJ, Moshiri A, Morse LS. Finasteride is effective for the treatment of central serous chorioretinopathy. Eye (Lond). 2016;30:850–856. [PMC free article] [PubMed] [Google Scholar]
44
Farman N, Rafestin-Oblin ME. Multiple aspects of mineralocorticoid selectivity. Am J Physiol Renal Physiol. 2001;280:181–192. [PubMed] [Google Scholar]
45
Zhao M, Valamanesh F, Celerier I, Savoldelli M, Jonet L, Jeanny JC, Jaisser F, Farman N, Behar-Cohen F. The neuroretina is a novel mineralocorticoid target: aldosterone up-regulates ion and water channels in Müller glial cells. FASEB J. 2010;24:3405–3415. [PubMed] [Google Scholar]
46
Pichi F, Carrai P, Ciardella A, Behar-Cohen F, Nucci P; Central Serous Chorioretinopathy Study G. Comparison of two mineralcorticosteroids receptor antagonists for the treatment of central serous chorioretinopathy. Int Ophthalmol. 2016. [PubMed] [Google Scholar]
47
No authors listed. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Arch Ophthalmol. 1999;117:1329–1345. [PubMed] [Google Scholar]
48
Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa D, Huang SJ, Klancnik JM Jr, Aizman A. Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. Retina. 2003;23:288–298. [PubMed] [Google Scholar]
49
Cardillo Piccolino F, Eandi CM, Ventre L, Rigault de la Longrais RC, Grignolo FM. Photodynamic therapy for chronic central serous chorioretinopathy. Retina. 2003;23:752–763. [PubMed] [Google Scholar]
50
Bae SH, Heo JW, Kim C, Kim TW, Lee JY, Song SJ, Park TK, Moon SW, Chung H. A randomized pilot study of low-fluence photodynamic therapy versus intravitreal ranibizumab for chronic central serous chorioretinopathy. Am J Ophthalmol. 2011;152:784–792. [PubMed] [Google Scholar]
51
Semeraro F, Romano MR, Danzi P, Morescalchi F, Costagliola C. Intravitreal bevacizumab versus low-fluence photodynamic therapy for treatment of chronic central serous chorioretinopathy. Jpn J Ophthalmol. 2012;56:608–612. [PubMed] [Google Scholar]
52
Nicolo M, Zoli D, Musolino M, Traverso CE. Association between the efficacy of half-dose photodynamic therapy with indocyanine green angiography and optical coherence tomography findings in the treatment of central serous chorioretinopathy. Am J Ophthalmol. 2012;153:474–480. [PubMed] [Google Scholar]
53
Senturk F, Karacorlu M, Ozdemir H, Karacorlu SA, Uysal O. Microperimetric changes after photodynamic therapy for central serous chorioretinopathy. Am J Ophthalmol. 2011;151:303–309. [PubMed] [Google Scholar]
54
Erikitola OC, Crosby-Nwaobi R, Lotery AJ, Sivaprasad S. Photodynamic therapy for central serous chorioretinopathy. Eye (Lond). 2014;28:944–957. [PMC free article] [PubMed] [Google Scholar]
55
Fung AE, Palanki R, Bakri SJ, Depperschmidt E, Gibson A. Applying the CONSORT and STROBE statements to evaluate the reporting quality of neovascular age-related macular degeneration studies. Ophthalmology. 2009;116:286–296. [PubMed] [Google Scholar]
56
Koytak A, Erol K, Coskun E, Asik N, Öztürk H, Özertürk Y. Fluorescein angiography-guided photodynamic therapy with half-dose verteporfin for chronic central serous chorioretinopathy. Retina. 2010;30:1698–1703. [PubMed] [Google Scholar]
57
Maruko I, Iida T, Sugano Y, Ojima A, Sekiryu T. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. Retina. 2011;31:1603–1608. [PubMed] [Google Scholar]
58
Uetani R, Ito Y, Oiwa K, Ishikawa K, Terasaki H. Half-dose vs one-thirddose photodynamic therapy for chronic central serous chorioretinopathy. Eye (Lond). 2012;26:640–649. [PMC free article] [PubMed] [Google Scholar]
59
Maruko I, Iida T, Sugano Y, Furuta M, Sekiryu T. One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy. Retina. 2011;31:1921–1927. [PubMed] [Google Scholar]
60
Karaçam Z. Epidemiyolojide gözlemsel araştirma raporu yaziminin güçlendirilmesi için bir rehber. Anadolu Hemşirelik ve Sağlık Bilimleri Dergisi. 2014;17:64–72. [Google Scholar]
61
Bousquet E, Beydoun T, Zhao M, Hassan L, Offret O, Behar-Cohen F. Mineralocorticoid receptor antagonism in the treatment of chronic central serous chorioretinopathy: a pilot study. Retina. 2013;33:2096–2102. [PubMed] [Google Scholar]
62
Chin EK, Almeida DR, Roybal CN, Niles PI, Gehrs KM, Sohn EH, Boldt HC, Russell SR, Folk JC. Oral mineralocorticoid antagonists for recalcitrant central serous chorioretinopathy. Clin Ophthalmol. 2015;9:1449–1456. [PMC free article] [PubMed] [Google Scholar]
63
Leisser C, Hirnschall N, Hackl C, Plasenzotti P, Findl O. Eplerenone in patients with chronic recurring central serous chorioretinopathy. Eur J Ophthalmol. 2016;26:479–484. [PubMed] [Google Scholar]
64
Cakir B, Fischer F, Ehlken C, Bühler A, Stahl A, Schlunck G, Böhringer D, Agostini H, Lange C. Clinical experience with eplerenone to treat chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254:2151–2157. [PubMed] [Google Scholar]
65
Singh RP, Sears JE, Bedi R, Schachat AP, Ehlers JP, Kaiser PK. Oral eplerenone for the management of chronic central serous chorioretinopathy. Int J Ophthalmol. 2015;8:310–314. [PMC free article] [PubMed] [Google Scholar]
66
Silva RM, Ruiz-Moreno JM, Gomez-Ulla F, Montero JA, Gregorio T, Cachulo ML, Pires IA, Cunha-Vaz JG, Murta JN. Photodynamic therapy for chronic central serous chorioretinopathy: a 4-year follow-up study. Retina. 2013;33:309–315. [PubMed] [Google Scholar]
67
Sakalar YB, Keklikci U, Unlu K, Alakus MF, Kara IH. Effects of photodynamic therapy with verteporfin for the treatment of chronic central serous chorioretinopathy: An uncontrolled, open-label, observational study. Curr Ther Res Clin Exp. 2010;71:173–185. [PMC free article] [PubMed] [Google Scholar]
68
Lim SH, Chang W, Sagong M. Efficacy of half-fluence photodynamic therapy depending on the degree of choroidal hyperpermeability in chronic central serous chorioretinopathy. Eye (Lond). 2013;27:353–362. [PMC free article] [PubMed] [Google Scholar]